由于異步電機的動態(tài)數(shù)學(xué)模型是一個高階、非線性、強耦合的多變量系統(tǒng)。上世紀70年代西門子工程師F.Blaschke首先提出異步電機矢量控制理論來解決交流電機轉(zhuǎn)矩控制問題。矢量控制實現(xiàn)的基本原理是通過測量和控制異步電動機定子電流矢量,根據(jù)磁場定向原理分別對異步電動機的勵磁電流和轉(zhuǎn)矩電流進行控制,從而達到控制異步電動機轉(zhuǎn)矩的目的。具體是將異步電動機的定子電流矢量分解為產(chǎn)生磁場的電流分量 (勵磁電流) 和產(chǎn)生轉(zhuǎn)矩的電流分量 (轉(zhuǎn)矩電流) 分別加以控制,并同時控制兩分量間的幅值和相位,即控制定子電流矢量,所以稱這種控制方式稱為矢量控制方式。簡單的說,矢量控制就是將磁鏈與轉(zhuǎn)矩解耦,有利于分別設(shè)計兩者的調(diào)節(jié)器,以實現(xiàn)對交流電機的高性能調(diào)速。矢量控制方式又有基于轉(zhuǎn)差頻率控制的矢量控制方式、無速度傳感器矢量控制方式和有速度傳感器的矢量控制方式等。這樣就可以將一臺三相異步電機等效為直流電機來控制,因而獲得與直流調(diào)速系統(tǒng)同樣的靜、動態(tài)性能。矢量控制算法已被廣泛地應(yīng)用在普傳公司的普傳高性能矢量變頻器上。
采用矢量控制方式的通用變頻器不僅可在調(diào)速范圍上與直流電動機相匹配,而且可以控制異步電動機產(chǎn)生的轉(zhuǎn)矩。由于矢量控制方式所依據(jù)的是準確的被控異步電動機的參數(shù),有的通用變頻器在使用時需要準確地輸入異步電動機的參數(shù),有的通用變頻器需要使用速度傳感器和編碼器。鑒于電機參數(shù)有可能發(fā)生變化,會影響變頻器對電機的控制性能,目前新型矢量控制通用變頻器中已經(jīng)具備異步電動機參數(shù)自動檢測、自動辨識、自適應(yīng)功能,帶有這種功能的通用變頻器在驅(qū)動異步電動機進行正常運轉(zhuǎn)之前可以自動地對異步電動機的參數(shù)進行辨識,并根據(jù)辨識結(jié)果調(diào)整控制算法中的有關(guān)參數(shù),從而對普通的異步電動機進行有效的矢量控制。
以異步電動機的矢量控制為例:
它首先通過電機的等效電路來得出一些磁鏈方程,包括定子磁鏈,氣隙磁鏈,轉(zhuǎn)子磁鏈,其中氣息磁鏈是連接定子和轉(zhuǎn)子的.一般的感應(yīng)電機轉(zhuǎn)子電流不易測量,所以通過氣息來中轉(zhuǎn),把它變成定子電流.
然后,有一些坐標變換,首先通過3/2變換,變成靜止的d-q坐標,然后通過前面的磁鏈方程產(chǎn)生的單位矢量來得到旋轉(zhuǎn)坐標下的類似于直流機的轉(zhuǎn)矩電流分量和磁場電流分量,這樣就實現(xiàn)了解耦控制,加快了系統(tǒng)的響應(yīng)速度.
最后再經(jīng)過2/3變換,產(chǎn)生三相交流電去控制電機,這樣就獲得了良好的性能.
矢量控制(VC)方式:
矢量控制變頻調(diào)速的做法是將異步電動機在三相坐標系下的定子電流Ia、Ib、Ic、通過三相-二相變換,
等效成兩相靜止坐標系下的交流電流Ia1Ib1,再通過按轉(zhuǎn)子磁場定向旋轉(zhuǎn)變換,等效成同步旋轉(zhuǎn)坐標系下的直流電流Im1、It1(Im1相當于直流電動機的勵磁電流;It1相當于與轉(zhuǎn)矩成正比的電樞電流),然后模仿直流電動機的控制方法,求得直流電動機的控制量,經(jīng)過相應(yīng)的坐標反變換,實現(xiàn)對異步電動機的控制。其實質(zhì)是將交流電動機等效為直流電動機,分別對速度,磁場兩個分量進行獨立控制。通過控制轉(zhuǎn)子磁鏈,然后分解定子電流而獲得轉(zhuǎn)矩和磁場兩個分量,經(jīng)坐標變換,實現(xiàn)正交或解耦控制。
綜合以上:矢量控制無非就四個知識:等效電路、磁鏈方程、轉(zhuǎn)矩方程、坐標變換(包括靜止和旋轉(zhuǎn))。大連普傳科技.